Name: 
 

Math 8 Practice Final #3



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

A bank surveyed its loans to new small businesses. It found that the ratio of unpaid or overdue loans to good loans was 2:4. If 330 small businesses are selected randomly from the bank’s files, how many are likely to have unpaid or overdue loans?
a.
6
c.
220
b.
55
d.
110
 

 2. 

Kelly works in the library and earned $58 last week. She spent $39 on a video game and saved the rest. Write the ratio of the money saved to the money earned in two ways.
a.
39:19 and mc002-1.jpg
c.
58:19 and mc002-3.jpg
b.
39:58 and mc002-2.jpg
d.
19:58 and mc002-4.jpg
 

 3. 

The ratio of the three sides of a right triangle is equivalent to the ratio of the corresponding sides of a similar triangle. The ratio is mc003-1.jpg. Determine the unknown measures f and h.
mc003-2.jpg
Diagram not to scale
a.
mc003-3.jpg cm and mc003-4.jpg cm
c.
mc003-7.jpg cm and mc003-8.jpg cm
b.
mc003-5.jpg cm and mc003-6.jpg cm
d.
mc003-9.jpg cm and mc003-10.jpg cm
 

 4. 

Each week, Joy drives 145 km for work and uses approximately 12 L of gasoline. What is her car’s rate of fuel consumption in litres per 100 km?
mc004-1.jpg
a.
8.3 L/100 km
c.
4.2 L/100 km
b.
0.1 L/100 km
d.
1.2 L/100 km
 

 5. 

One completely shaded grid represents 100%. What percent does this diagram represent?
mc005-1.jpg
a.
125%
c.
105%
b.
115%
d.
15%
 

 6. 

Five-sevenths of a percent of the volume of apple juice in a container is approximately 10.36 mL. What is the total volume of apple juice in the container?
a.
145.00 L
c.
1.45 L
b.
14.50 L
d.
0.15 L
 

 7. 

A remote village in British Columbia had a population of 293 in 2014. The population decreased by 5.5% in 2015 and increased by 3.3% in 2016. What is the village’s population at to start 2017?
a.
309
c.
286
b.
299
d.
277
 

 8. 

Write a proportion to determine 15% of 12. Solve the proportion to determine this number, n.
a.
mc008-1.jpg; n = 125
c.
mc008-3.jpg; n = 12.5
b.
mc008-2.jpg; n = 0.18
d.
mc008-4.jpg; n = 1.8
 

 9. 

Jamie earns $4400 per month. He spends $2024 on rent and his car loan. What percent of his income does Jamie spend on rent and his car loan?
a.
57%
c.
46%
b.
67%
d.
54%
 

 10. 

A square has an area of 144 cm2. What is the side length of the square?
a.
12 cm
c.
288 cm
b.
6 cm
d.
20736 cm
 

 11. 

Represent the Pythagorean relationship symbolically using the triangle shown.

mc011-1.jpg
a.
mc011-2.jpg
c.
mc011-4.jpg
b.
mc011-3.jpg
d.
mc011-5.jpg
 

 12. 

The value of mc012-1.jpg is approximately _________.
a.
1.01
c.
1.00
b.
0.98
d.
0.99
 

 13. 

A square has an area of 81 cm2. Find the side length of the square. Round your answer to the nearest tenth of a centimetre.
a.
9.0 cm
c.
6.4 cm
b.
12.7 cm
d.
20.3 cm
 

 14. 

If only the two ends of the roof area need to be painted, what is the total surface area that needs to be painted? Round your answer to the nearest tenth of a metre.
mc014-1.jpg
Diagram not drawn to scale
a.
36.3 m2
b.
18.5 m2
c.
72.6 m2
d.
9.2 m2
 
 
nar001-1.jpg
 

 15. 

Given the four views of the same die, how many dots will be found on the bottom face of this die?

mc015-1.jpg

a.
2
c.
4
b.
6
d.
1
 

 16. 

To find the surface area of a cube, you must know the dimensions of __________.
a.
2 faces
c.
3 faces
b.
4 faces
d.
1 face
 

 17. 

What is the surface area of the two bases of a cylinder with a radius of 2 cm and a height of 12 cm?
mc017-1.jpg
a.
150.80 cm2
c.
25.13 cm2
b.
12.57cm2
d.
100.53 cm2
 

 18. 

This object is made from 7 centimetre cubes. What is its surface area?
mc018-1.jpg
a.
26 cm2
c.
15 cm2
b.
30 cm2
d.
24 cm2
 

 19. 

What is the cube root of 512?
a.
134 217 728
c.
24
b.
1536
d.
8
 

 20. 

Which of the following whole numbers has a cube root between 4 and 5?
a.
103
c.
27
b.
216
d.
8
 

 21. 

Aria calculates the volume of a gift box measuring 35 cm mc021-1.jpg 30 cm mc021-2.jpg 20 cm. Her answer will be expressed in __________.
a.
quadratic centimetres
c.
cubic centimetres
b.
centimetres
d.
square centimetres
 

 22. 

What is the volume of the cylinder, rounded to the nearest cubic inch?
mc022-1.jpg
Diagram not drawn to scale
a.
9 in.3
c.
37 in.3
b.
18 in.3
d.
27 in.3
 

 23. 

The volume of this triangular prism would be calculated as

mc023-1.jpg
Diagram not drawn to scale
a.
mc023-2.jpg
b.
mc023-3.jpg
c.
mc023-4.jpg
d.
mc023-5.jpg
 
 
Choose the best answer.
 

 24. 

Which multiplication statement represents the following addition statement?
4 + 4 + 4 + 4
a.
2 ´ 4
c.
4 ´ 44
b.
4 ´ 4
d.
44 ´ 44
 

 25. 

When you multiply an odd number of negative integers by an odd number of positive integers, what type of integer do you always get?
a.
infinite integer
c.
positive integer
b.
negative integer
d.
zero
 

 26. 

Which expression does this diagram represent?

mc026-1.jpg
a.
mc026-2.jpg
c.
mc026-4.jpg
b.
mc026-3.jpg
d.
mc026-5.jpg
 

 27. 

A stock decreased in price by $60 over five days. Determine the mean daily decrease in price.
a.
$5/day
c.
$20/day
b.
$12/day
d.
$30/day
 

 28. 

A pilot is flying at an altitude of 6000 m, where the temperature is -23 °C. As the plane descends toward the airport, the temperature increases by 2 °C for every 1000 m drop in elevation. The airport is at an elevation of 1000 m. What is the temperature there?
a.
-11 °C
c.
-13 °C
b.
-12 °C
d.
-14 °C
 

 29. 

Determine the result of mc029-1.jpg - mc029-2.jpg, in lowest terms.
a.
mc029-3.jpg
c.
mc029-5.jpg
b.
mc029-4.jpg
d.
mc029-6.jpg
 

 30. 

Express the result of mc030-1.jpg - mc030-2.jpg + mc030-3.jpg, in lowest terms.
a.
mc030-4.jpg
c.
mc030-6.jpg
b.
mc030-5.jpg
d.
mc030-7.jpg
 

 31. 

What is mc031-1.jpg + mc031-2.jpg - mc031-3.jpg?
a.
mc031-4.jpg
c.
mc031-6.jpg
b.
14mc031-5.jpg
d.
mc031-7.jpg
 

 32. 

Calculate mc032-1.jpg - mc032-2.jpg - mc032-3.jpg  and express the answer in lowest terms.
a.
mc032-4.jpg
c.
mc032-6.jpg
b.
mc032-5.jpg
d.
mc032-7.jpg
 

 33. 

Determine mc033-1.jpg. Express your answer in lowest terms.
a.
mc033-5.jpg
c.
mc033-7.jpg
b.
mc033-6.jpg
d.
mc033-8.jpg
 

 34. 

Calculate 2mc034-1.jpg.
a.
mc034-7.jpg
c.
mc034-9.jpg
b.
mc034-8.jpg
d.
mc034-10.jpg
 

 35. 

The total area of Canada is about 9 985 000 km2. The total area of Nova Scotia is about mc035-1.jpg of the total area of Canada. What is the area of Nova Scotia?
a.
16 641 667 km2
c.
599 100 km2
b.
1 664 167 km2
d.
59 910 km2
 

 36. 

Calculate mc036-1.jpg.
a.
mc036-4.jpg
c.
mc036-6.jpg
b.
mc036-5.jpg
d.
mc036-7.jpg
 

 37. 

For the equation 2x – 1 = 10, which operation should you use in isolating the variable?
a.
addtion
c.
multiplication
b.
division
d.
subtraction
 

 38. 

The phrase “9 times a number, increased by 12, equals 15” can be modelled with the equation
a.
mc038-1.jpg
c.
mc038-3.jpg
b.
mc038-2.jpg
d.
mc038-4.jpg
 

 39. 

What is the solution to the equation mc039-1.jpg?
a.
2
c.
–9
b.
9
d.
11
 

 40. 

What is the solution to the equation mc040-1.jpg?
a.
–8
c.
4
b.
–3
d.
13
 
 
Benjamin drives from Vancouver to Nelson.  The total distance is 660 km, which took 7.5 hours to drive. He uses a table to record the data.

Time t (h)
Distance d (km)
1.1
94
2.1
189
3.2
283
4.3
377
5.4
471
6.4
566
7.5
660
 

 41. 

What graph represents the linear relation?
a.

mc041-1.jpg
c.

mc041-3.jpg
b.

mc041-2.jpg
d.

mc041-4.jpg
 

 42. 

How far did Benjamin drive in the first 3.1 hours?
a.
583 km
c.
292 km
b.
386 km
d.
197 km
 
 
Study this growing pattern of hexagons.
nar004-1.jpg
 

 43. 

What linear relation shows the relationship between the number of line segments, l, and the number of hexagons, h?
a.
mc043-1.jpg
c.
mc043-3.jpg
b.
mc043-2.jpg
d.
mc043-4.jpg
 
 
Study this growing pattern of octagons.

nar005-1.jpg
 

 44. 

What would be the number of line segments, l, when the number of octagons is 14?
a.
82
c.
112
b.
83
d.
86
 
 
Study this growing pattern of rhombuses.
nar006-1.jpg
 

 45. 

What graph shows the relationship between the number of line segments, l, and the number of rhombuses, r?
a.
mc045-1.jpg
c.
mc045-3.jpg
b.
mc045-2.jpg
d.
mc045-4.jpg
 
 
Study this growing pattern of rhombuses.
nar007-1.jpg
 

 46. 

What linear relation shows the relationship between the number of line segments, l, and the number of squares, s?
a.
l = 4 + s
c.
l = 2s - 2
b.
l = 4s – 1
d.
l = 2s + 2
 

 47. 

Zoe’s percent midterm marks for six courses are 90, 65, 77, 89, 75, 90. What is her mean mark?
a.
83%
c.
81%
b.
77%
d.
90%
 

 48. 

A school hockey team scored 9, 2, 4, 9, 6, 7, 5 goals in seven regular season games. Which two measures of central tendency have the same value?
a.
mean and range
c.
mean and mode
b.
median and mean
d.
median and mode
 
 
Rawan is doing a school project where she has to exercise every day of the week. The table shows how long she exercised each day last week.
 
Day of the Week
Exercise Time (min)
Monday
27
Tuesday
27
Wednesday
25
Thursday
27
Friday
26
Saturday
49
Sunday
29
 

 49. 

Which is the best measure of central tendency for Rawan’s data set?
a.
median
c.
range
b.
mean
d.
mode
 

 50. 

Every day, Rawan goes to a restaurant for lunch. She orders a salad and a soup, at random. There are 6 different salad choices and 4 different soup choices. If she has a different lunch each day, how long will it take for her to have tried all of the possible combinations?
a.
10 days
c.
6 days
b.
24 days
d.
35 days
 



 
Check Your Work     Start Over