Name: 
 

Math 8 Practice Final #5



Multiple Choice
Identify the choice that best completes the statement or answers the question.
 

 1. 

Determine the value of x if mc001-1.jpg.
a.
27
c.
21
b.
7
d.
6
 

 2. 

If there are 104 flights a day in and out of Kelowna airport, and 10% of the flights are late, approximately many flights will arrive on time?
a.
10
c.
10
b.
94
d.
90
 

 3. 

The ratio of the three sides of a right triangle is equivalent to the ratio of the corresponding sides of a similar triangle. The ratio is mc003-1.jpg. Determine the unknown measures f and h.
mc003-2.jpg
Diagram not to scale
a.
mc003-3.jpg cm and mc003-4.jpg cm
c.
mc003-7.jpg cm and mc003-8.jpg cm
b.
mc003-5.jpg cm and mc003-6.jpg cm
d.
mc003-9.jpg cm and mc003-10.jpg cm
 

 4. 

Oranges are sold at $1.09 per kilogram. Mohan buys 13 kg of oranges. Determine how much he pays.
a.
$14.17
c.
$15.17
b.
$13.67
d.
$14.67
 

 5. 

One completely shaded grid represents 100%. Which grid represents 100mc005-1.jpg%?
a.

mc005-2.jpg
c.

mc005-4.jpg
b.

mc005-3.jpg
d.

mc005-5.jpg
 

 6. 

How many hundred grids do you need to represent 764%?

a.
76
c.
9
b.
6
d.
8
 

 7. 

Express 6.75 as a mixed number in lowest terms.
a.
mc007-1.jpg
c.
mc007-3.jpg
b.
mc007-2.jpg
d.
mc007-4.jpg
 

 8. 

Write a proportion to determine 15% of 12. Solve the proportion to determine this number, n.
a.
mc008-1.jpg; n = 125
c.
mc008-3.jpg; n = 12.5
b.
mc008-2.jpg; n = 0.18
d.
mc008-4.jpg; n = 1.8
 

 9. 

Harry buys a laptop for $749.99. In his province, the sales tax is 15%. How much does Harry pay for the laptop with tax? Express your answer to the nearest 5¢.
mc009-1.jpg
a.
$637.50
c.
$862.50
b.
$112.50
d.
$806.25
 

 10. 

The areas of the squares shown are in square centimetres. Use the Pythagorean relationship to find the unknown area of the square.

mc010-1.jpg
a.
14 cm2
c.
100 cm2
b.
2304 cm2
d.
48 cm2
 

 11. 

The value of mc011-1.jpg is between which two numbers?
a.
1 and 1.01
c.
0.98 and 0.99     
b.
1.01 and 1.02
d.
0.99 and 1
 

 12. 

Determine the approximate area of the square that can be drawn on the missing side.

mc012-1.jpg
a.
448.1 cm2
c.
192.7 cm2
b.
43.6 cm2
d.
202.3 cm2
 

 13. 

The hypotenuse of a right triangle is 26 cm. One leg of the triangle is 12 cm. How long must the other leg be, to the nearest tenth of a centimetre?
a.
23.1 cm
c.
196.0 cm
b.
14.0 cm
d.
28.6 cm
 

 14. 

What is the minimum number of views needed to describe a 3-D object?
a.
5
b.
1
c.
6
d.
3
 

 15. 

Find the surface area of this rectangular prism.
mc015-1.jpg
a.
258 cm2
c.
270 cm2
b.
135 cm2
d.
129 cm2
 

 16. 

What 3-D object can be created by folding this net?
mc016-1.jpg
a.
rectangular prism
c.
cylinder
b.
triangular prism
d.
cube
 

 17. 

The distance between adjacent dots (vertical and horizontal) is 2 cm. What would be the surface area of the 3-D object produced by the net shown?

mc017-1.jpg
           
a.
88 cm2
c.
176 cm2
b.
96 cm2
d.
24 cm2
 

 18. 

What is the surface area of a cylinder with a radius of 3 cm and a height of 19 cm, to the nearest hundredth of a square centimetre?
a.
395.84 cm2
c.
56.55 cm2
b.
414.69 cm2
d.
358.14 cm2
 

 19. 

The value of mc019-1.jpg is between which two numbers?
a.
0.847 and 0.848
c.
0.848 and 0.849
b.
0.849 and 0.85
d.
0.846 and 0.847     
 

 20. 

The volume of a cube with side lengths of 7 cm is __________.
a.
49 cm3
c.
2401 cm3
b.
343 cm3
d.
7 cm3
 

 21. 

Which rectangular prism has the greatest surface area to volume ratio?
mc021-1.jpgmc021-2.jpg
a.
Prism A
c.
They have the same ratio.
b.
Prism B
d.
There is not enough information to calculate the ratios.
 

 22. 

Determine the volume of the right triangular prism.
mc022-1.jpg
Diagram not drawn to scale
a.
180 m3
c.
360 m3
b.
780 m3
d.
390 m3
 

 23. 

A rectangular-based prism has a base area of 16 cm2 and a height of 12 cm. What is the volume of a pyramid that has a congruent base and the same height as the prism?
mc023-1.jpg
Diagram not drawn to scale
a.
48 cm3
c.
96 cm3
b.
192 cm3
d.
64 cm3
 

 24. 

Determine which multiplication statement this diagram represents.

mc024-1.jpg
a.
mc024-2.jpg
c.
mc024-4.jpg
b.
mc024-3.jpg
d.
mc024-5.jpg
 

 25. 

What division statement does this diagram represent?

mc025-1.jpg
a.
mc025-2.jpg
c.
mc025-4.jpg
b.
mc025-3.jpg
d.
mc025-5.jpg
 

 26. 

Martina improved her math mark by 2% on each of six tests. How much higher was her mark on the last test than on the first?
a.
4%
c.
12%
b.
8%
d.
16%
 

 27. 

Evaluate –8 – 3(–2 – 1).
a.
-14
c.
1
b.
-5
d.
21
 

 28. 

Blaine drove from Calgary to Winnipeg at an average speed of 90 km/h. After 11 hours Blaine was 218 km from Winnipeg. Determine how far apart Calgary and Winnipeg are from one another.
a.
772 km
c.
1208 km
b.
990 km
d.
1306 km
 

 29. 

What fraction, in lowest terms, is shown by the shaded parts of the diagram?
mc029-1.jpg
a.
mc029-2.jpg
c.
mc029-4.jpg
b.
mc029-3.jpg
d.
mc029-5.jpg
 

 30. 

What is mc030-1.jpg + mc030-2.jpg, in lowest terms?
a.
mc030-3.jpg
c.
mc030-5.jpg
b.
mc030-4.jpg
d.
mc030-6.jpg
 

 31. 

What is mc031-1.jpg when it is written as a mixed number? 
a.
mc031-2.jpg
c.
mc031-4.jpg
b.
mc031-3.jpg
d.
mc031-5.jpg
 

 32. 

Calculate mc032-1.jpg - mc032-2.jpg - mc032-3.jpg  and express the answer in lowest terms.
a.
mc032-4.jpg
c.
mc032-6.jpg
b.
mc032-5.jpg
d.
mc032-7.jpg
 

 33. 

Determine mc033-1.jpg mc033-2.jpg, in lowest terms.
a.
mc033-3.jpg
c.
mc033-5.jpg
b.
mc033-4.jpg
d.
mc033-6.jpg
 

 34. 

Calculate 2mc034-1.jpg.
a.
mc034-7.jpg
c.
mc034-9.jpg
b.
mc034-8.jpg
d.
mc034-10.jpg
 

 35. 

Olivia spends half an hour each night working on Math. This is mc035-1.jpg as much time as she spends on English. How much time does she spend on English?
a.
mc035-2.jpg h
c.
mc035-4.jpg h
b.
mc035-3.jpg h
d.
mc035-5.jpg h
 

 36. 

Calculate mc036-1.jpg mc036-2.jpg.
a.
mc036-3.jpg
c.
mc036-5.jpg
b.
mc036-4.jpg
d.
mc036-6.jpg
 

 37. 

The total delivery cost on a shipment of furniture is mc037-1.jpg, where m represents the number of pieces of furniture being delivered, and c is the total cost. How much would it cost to deliver eight pieces of furniture?
a.
$38.00
c.
$21.00
b.
$11.00
d.
$42.00
 

 38. 

Solve the equation 2y – 6 = 38.
a.
mc038-1.jpg
c.
mc038-3.jpg
b.
mc038-2.jpg
d.
mc038-4.jpg
 

 39. 

Thomas has scored 37 points in 9 hockey games this season. His goal for the season is to score 60 points. Which equation can be used to find the number of points, p, that Thomas must average in his last six games to reach his goal?
a.
37 – 6p = 60
c.
60 + 6p = 37
b.
37p + 6= 60
d.
37 + 6p = 60
 

 40. 

The phrase “9 times a number, increased by 12, equals 15” can be modelled with the equation
a.
mc040-1.jpg
c.
mc040-3.jpg
b.
mc040-2.jpg
d.
mc040-4.jpg
 

 41. 

Madison purchased 7 DVDs. The tax on each DVD was $4; the total cost was $146. What equation models this situation?
a.
mc041-1.jpg
c.
mc041-3.jpg
b.
mc041-2.jpg
d.
mc041-4.jpg
 

 42. 

Sophia purchased 5 DVDs. The tax on each DVD was $1; the total cost was $135. What was the cost of each DVD?
a.
28
c.
130
b.
27
d.
26
 
 
Benjamin drives from Vancouver to Nelson.  The total distance is 660 km, which took 7.5 hours to drive. He uses a table to record the data.

Time t (h)
Distance d (km)
1.1
94
2.1
189
3.2
283
4.3
377
5.4
471
6.4
566
7.5
660
 

 43. 

How long did it take Benjamin to drive 389 km?
a.
1.2 h
c.
3.1 h
b.
4.1 h
d.
0.2 h
 
 
Study this growing pattern of hexagons.
nar002-1.jpg
 

 44. 

What graph shows the relationship between the number of line segments, l, and the number of hexagons, h?
a.
mc044-1.jpg
c.
mc044-3.jpg
b.
mc044-2.jpg
d.
mc044-4.jpg
 
 
Study this growing pattern of octagons.

nar003-1.jpg
 

 45. 

What linear relation shows the relationship between the number of line segments, l, and the number of octagons, g?
     
a.
mc045-1.jpg
c.
mc045-3.jpg
b.
mc045-2.jpg
d.
mc045-4.jpg
 

 46. 

What is the solution to the equation mc046-1.jpg?
a.
–40
c.
38
b.
26
d.
–10
 

 47. 

A meteorologist wants to determine how much snow a city receives in a year. Which measure of central tendency is the most appropriate to use?
a.
median
c.
mode
b.
mean
d.
range
 

 48. 

Which measure of central tendency is always equal to one of the values in the data set?
a.
range
c.
mean
b.
median
d.
mode
 
 
Rawan is doing a school project where she has to exercise every day of the week. The table shows how long she exercised each day last week.
 
Day of the Week
Exercise Time (min)
Monday
27
Tuesday
27
Wednesday
25
Thursday
27
Friday
26
Saturday
49
Sunday
29
 

 49. 

What is the value of the outlier in Rawan’s data set?
a.
30
c.
25
b.
49
d.
27
 

 50. 

How many possible outcomes are there when you flip a coin and roll a twenty-sided die at the same time?
a.
20
c.
40
b.
400
d.
80
 



 
Check Your Work     Start Over